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SUMMARY 

This paper develops and analyses individual construction aspects of an efficient and accurate finite element 
algorithm for prediction of viscous and turbulent flow fields of impact in aerodynamics. The theoretical 
construction employs a Taylor weak statement (TWS) for coincident embedding of stability mechanisms 
within a classic Galerkin finite element formulation of semi-discrete approximation error orthogonalization. 
A wide variety of the stabilizing mechanisms of independently derived CFD algorithms are contained within 
the TWS theory. An implicit construction that meets the requirement of efficient convergence to steady state is 
developed. The theoretical asymptotic error estimates of the TWS finite element algorithm for supersonic and 
viscous boundary layer flows are verified. Application to a three-dimensional turbulent flow is cited. 
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INTRODUCTION 

The unsteady three-dimensional Navier-Stokes (3 DNS) equations for a viscous, compressible, 
heat-conducting fluid are the pertinent system governing aerodynamics. The direct solution of the 
3 DNS system is impractical, since the number of floating point operations for a grid of sufficient 
refinement (to predict details accurately) exceeds even next-generation supercomputer capabilities. 
Therefore, simplifications to the 3 DNS system for numerical approximation have been the subject 
of CFD algorithm research over the past two decades. For steady, three-dimensional aerodynamic 
flows, a modestly restricted but highly useful simplification is the ‘thin layer Navier-Stokes 
(TLNS)’ approximation, wherein axial diffusion effects (in the direction parallel to the predominant 
flow direction) are neglected as higher order. This singular perturbation approximation does not in 
itself impose a pressure approximation, and the pressure field exerts an (elliptic) boundary-value 
character for all but purely supersonic inviscid flows. Hence, only in this special case is the steady 
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flow TLNS set mathematically well posed as a (spatial) initial-value problem. 
The accounting of the elliptic pressure coupling for a viscous/turbulent flow prediction is the 

principal distinguishing characteristic of the many published finite difference (FD), approximate 
factorization (AF), finite volume (FV) and finite element (FE) space-marching 'parabolic Navier- 
Stokes (PNS)' algorithms for solution of the steady TLNS equation set. Problem well-posedness, 
and the inclusion of downstream pressure (signals) within subsonic/transonic regions, requires 
algorithm construction within a pressure interaction framework. Rubin and co-~orkers ' -~  
pioneered early developments, and Rubin6 reviews procedures for pressure interaction and 
relaxation procedures for separated incompressible flows. Lin and Rubin7 present a strongly 
implicit (CSIP) PNS algorithm for supersonic viscous external flows utilizing a global relaxation 
for the pressure interaction that eliminates the 'departure solution', the viscous PNS algorithm 
lower-bound stability constraint on axial (marching) step size. Reddy and Rubin' document the 
subsonic/transonic 2D extension of the CSIP relaxation PNS algorithm for shocked aerofoil 
flows exhibiting strong pressure interaction. 

first reported a non-iterative AF PNS algorithm for 3D TLNS in stretched 
Cartesian co-ordinates for sharp cones. Rakich et al." generalized the co-ordinate system and 
included a turbulent capability using an elementary eddy viscosity model. For the reported 
solutions, the axial pressure gradient was usually neglected and mention is made of the need to add 
artificial viscosity terms for stabilization. An analysis is reported that predicts the fraction o of the 
axial pressure gradient that can be implicitly included in the subsonic regions for steady flow while 
maintaining algorithm stability. Tannehill et al.' ' generalize the A F  non-iterative PNS algorithm 
to supersonic blunt body downstream flows in generalized co-ordinates and archive the departure 
solution stability analysis of Vigneron et al. The completely generalized co-ordinate transform- 
ation renders PNS solution initiation more stable, a difficulty that is reported to pervade the entire 
spectrum of PNS algorithm constructions. 

An alternative TLNS AF algorithm is published by Schiff and Steger" for 2D and 3D laminar 
external flows in generalized co-ordinates. The delta form is detailed, as is a sublayer 
approximation for the axial pressure gradient and a global surface pressure iteration to suppress 
the departure solution. Chaussee et al.' report, for geometrically complicated blunt bodies, the 
extension which is conservative, first- or second-order accurate in the marching direction, second- 
order accurate in the transverse plane and contains an artificial viscosity formulation. The 
departure solution is suppressed by imposing the exterior axial pressure gradient throughout 
the subsonic reach of the attached boundary layer. The AFWAL PNS Code14 for supersonic, 
viscous external flow fields is based upon this non-iterative A F  delta form PNS algorithm. A 
viscous-inviscid interaction pressure relaxation procedure is not included; however, Rakich' 
developed and evaluated in 2D a pressure relaxation algorithm applicable to the A F  algorithm 
constructions. 

A linearized block-implicit (LBI) FD PNS algorithm is developed for the steady Navier-Stokes 
equations by Briley and M ~ D o n a l d . ' ~ . ' ~  Early applications emphasized subsonic internal flows 
and utilized a single-pass, axial pressure gradient computation based on an inviscid flow 
assumption with a viscous (drag) correction. The departure solution is thus suppressed in the 
absence of a viscous-inviscid interaction theory. Recent applications emphasize secondary vortex 
generation in curved, air-breathing engine inlet ducts.' **I9  Predictions for turbulent flows used an 
elementary algebraic model for the Reynolds principal shear stress, with the Launder and 
Spalding" parabolized two-equation turbulent kinetic energy-isotropic dissipation (k, E )  differen- 
tial equation system. The boundary conditions for k and E were slip-wall employing similarity 
(log law) boundary layer concepts to produce algebraic Dirichlet expressions at y +  > 30. 

No research groups in the finite element community have specifically developed supersonic flow 
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PNS algorithms. Baker and Orzechowski’l (see also References 22 and 23) develop an 
incompressible penalty function PNS algorithm for the turbulent TLNS equation set applicable to 
exterior as well as interior flow geometries. The continuity equation, as a differential constraint on 
momentum equation solutions, is imposed directly as a penalty function. An ordering analysis 
prompts restructuring of the transverse momentum equations to yield a pressure Poisson 
equation. The associated complementary and particular solution statements facilitate a pressure 
interaction procedure that eliminates the departure solution. The parabolic two-equation (k ,  E )  
turbulent closure of Launder and SpaldingZo is employed, in concert with an algebraic complete 
Reynolds stress equation containing length scale (van Driest) damping. This permits resolution of 
the laminar sublayer/transition regions of boundary and corner layers using no-slip boundary 
conditions. 

This paper develops and examines key theoretical elements of a mixed supersonic/subsonic FE 
PNS algorithm for application to aerodynamic flows including turbulent and three-dimensional 
configurations. The principal analysis aspects include construction of a stable and efficient 
algorithm and the interplay between numerical and physical dissipation mechanisms and time- 
and/or space-marching procedures. 

PROBLEM STATEMENT 

G o u e r n i n g  equation statement 

The TLNS approximation is an elementary but mathematically consequential simplification of 
the complete 3 DNS equation system, which in non-dimensional conservation law form and in a 
rectangular Cartesian co-ordinate system is 

(1) 
aq a ( E - E , )  a ( F - F , )  d(G-G,) -+ + =O. 

+ aZ 

q(x, t )  = (P ,  PU, P U ,  P W ,  pelT. 

E(x, t )  = ( P U ,  PUZ + P7 P U V ,  P U W ,  (pe + P ) U ) T ,  

E ,  = (07 O x x ,  O x y ,  O X Z ?  U O X X  + u q x y  + wcxz + qxIT. 

at ax aY 
The dependent variable set is 

E, F and G contain the non-viscous terms, e.g. 

while E,, F, ,  G, contain the viscous/conduction terms, e.g. 

A co-ordinate transformation from x to q is usually invoked, whereupon the divergence operator 
a/ax is transformed to scalar components in the q boundary fitted co-ordinate system. This yields 
definition of the contravariant components ( Vi) of the convection velocity u, and the determinant J 
of the transformation Jacobian as the measure of the mesh. 

The unsteady 3 DNS equation system is addressed, although we principally seek its steady state 
approximate solution. Equation (1) must be statistically averaged; an ensemble-averaging or mass- 
weighted time-averaging procedurez4 is appropriate, wherein the mean velocity definition 
becomes 

_ _  
fii = p u J p  , (2)  

with the overbar denoting time average. Thereupon, we have the definitions 
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~- i7 = h" + +iliil, + +pu;u: / p  , 
_ _  

(3) z = ph/p ( j / p ) [ % - l ) l ,  

Real gas effects may be accounted for by variable gamma,25 wherein y" = z/S is the effective 
gamma and S is the specific internal energy. In terms of q E ( p ,  pu,, p H  - p)', the 3 DNS equation 
system can be written as 

- 

and 

aq a f j -  -+--0 
at axj 

Equations (4), (5) contain - more dependent variables than equations; hence closure models for the 
Reynolds stress tensor (pu,iu;) and the turbulent heat flux vector (pH'u) - u:aij) are required. A 
simple algebraic shear stress model (e.g. Baldwin-Lomax) may be 'adequate' in many instances. 
If not, the next level of complexity appends the time-averaged two-equation TKE system to 
equations (4) and ( 5 )  in concert with an algebraic Reynolds stress model. For the TKE system, 
wherein pk = p k  = +puiui, and using the Launder-Spalding" correlation for pressure-strain and 
the Daly-HarlowZ6 gradient diffusion model (see also Reference 27), the additional entries in the 
flux vector f are 

- -  

w -  

The source term that is now added to equation (4) is 

and the isotropic dissipation function E" is related to a turbulence length scale 1, as 
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The coefficients Cz in equation (7) are model constants, standard values for which are well 
established for incompressible and (mildly) compressible flows. 

The TLNS equation system 

The 3 DNS differential equation system is now 

aq a f .  -+‘+s=O 
at axj (9) 

Referencing to freestream (M,) and the associated stagnation properties ( p o ,  a,, H, ,  yo, p,, ko)  for 
non-dimensionalization, and deleting the overbar notation for 
dimensional) variables in equation (9) are 

mean flow variables, the (non- 

Equations (9), (10) are closed with the following (non-dimensional) equations: 

1 -  

- _ _  
s . . = D . .  - p ! u ’ .  

4 ’  J J  = 4’  + pu;w - u:oij -(yo - l ) a io i j ,  

11 1J I I ’  
- ~ _ _  - 

with 

where Re = poa,L/p,, Pr = yopoR/(y,  - l)k, and L is a convenient length scale. The Reynolds 
stress tensor and heat flux vector closure equations (equation (3)) are unchanged in the 
non-dimensional form. 

The key TLNS algorithm step is to recast equation (9)  using a (body-fitted) co-ordinate 
transformation x i  = (x, y, z)  + (5 ,  q, [) that nominally aligns the 5 co-ordinate with the principal 
flow direction. For non-time-varying boundaries, the form is 
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1 G=- 
J 

whereupon equation (9) becomes 

The non-viscous (Euler) elements of equation (14) are 

1 E = -  
J 

1 
, F = j  

(15) 

where J is the Jacobian of equation (13), and the contravariant velocity (U) scalar components 
parallel to the (5 ,  1, 5) co-ordinate system are 

u = 5,u + 5,u + t Z W ,  

v = vxu + qyu + q2w,  

w = cxu + i y u  + C,w. (16) 

The diffusive (viscous/turbulent) elements of equation (14) are 

1 E =- 
" J  

1 
' J  

F =- 
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Deletion of the terms in E,, F ,  and G, involving < derivatives yields the TLNS simplification to 
the 3 DNS equation system, whereupon the notation E:, F,* and G,* is usually invoked. By the 
elimination of these axial diffusion terms, the steady TLNS equations exhibit an initial-value 
character in the < (downstream) co-ordinate direction. However, as mentioned, the mathematical 
inconsistency associated with direct forward marching of the viscous TLNS equations is the 
departure solution. The necessary condition for suppression of the departure solution is that only 
the fraction o of the local computed axial pressure gradient can be imposed in the subsonic flow 
regions of a TLNS solution. The remaining fraction 1 - o must be replaced by the axial pressure 
gradient computed external to the sonic line, and 

where M ,  is the local axial streamwise Mach number. Applying this criteria for computing the 
axial pressure gradient in E ,  equation (15) yields p replaced by p*. 

The TLNS equation system, equations (14)-( 17), is an initial-boundary-value specification. The 
boundary surfaces encountered include solid (and porous) aerodynamic surfaces and far-field and 
symmetry planes. For a non-porous surface all components of the contravariant velocity field 
( U ,  V,  W )  vanish, while if the surface is porous (for cooling) the corresponding normal component 
( V  or W )  takes a prescribed distribution. A wall heat recovery specification for enthalpy involves a 
non-homogeneous Neumann boundary condition on the normal derivative which vanishes for an 
adiabatic wall. For the viscous sublayer boundary layer assumption, the normal pressure gradient 
vanishes. 

The wall boundary condition for the TKE closure is k = 0 = E for a sufficiently refined grid. For 
attached flows this resolution may not be necessary, permitting use of wall function relations. 
Using the 'law of the wall' analysis,28 the slip-wall boundary condition for the contravariant 
velocity component U is 

u 1  
- = -In ( y  + E )  
u, K 

in the region 30 < y+ < 100, where u, is the friction velocity, K is the Karman constant, E is a 
surface roughness parameter and y+ = yu,/v. In this region, assuming P = E ,  where P = ufaU/ay,  
also 

i7% u,2/Jcy, E" = uj/lcy. (20) 

TAYLOR WEAK STATEMENT FINITE ELEMENT ALGORITHM 

The finite element solution algorithm for the TLNS equation system, equations (14)-( 18), is 
derived using the Taylor weak statement developed by Baker and Kim.29 Since equation (14) 
defines an evolution statement, there must exist the Taylor series 

qn+' = 4" + Atq: + +At2& + &At3qytr + . . . , (21) 
where subscript 't' denotes order of temporal derivative at t ,  and t,+ = t ,  + At. Equation (14) 
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permits restatement of the first term in equation (21) as 

which defines i j ,  the Jacobian of the TLNS flux vector f j .  For the TLNS system written in the co- 
ordinate transformation (equation (14)) with unit vector e, we have 

Equation (23) defines A j  as the Jacobian of the ‘Euler’ flux vector, i.e. that component associated 
with non-viscous and non-dissipative mechanisms. Using equation (14), therefore, 

uj, 0, 0, 0, 0’ 

uiuj(+ij-l), Uj(l +$), 0, 0, 0 

where U j  are the scalar components of U in the y-coordinate system, i.e. ( U ,  V ,  W),  equation (16). 
Following Baker and Kim,” the second derivative term in equation (21) is approximated as 

a 

where Cr and p are arbitrary parameters forming a convex sum. The third derivative term in 
equation (2 1) is similarly evaluated, yielding 

Combining equations (21)-(26), taking the limit as At + 0, but retaining the two higher-order 
terms yields the augmented (for discrete approximation) TLNS equation system as 

+ . . . = 0,  a4 
a x j  a x j  a ( - 84 + A j -  - At- PAjAk- + PAtAjAJ 

where a, 8, y, p(without overbars) are defined to include the constants of the original Taylor series, 
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equation (21). Equation (27) is identical to the TLNS conservation law statement in the limit; in the 
CFD sequel, At  # 0, whereupon combinations and simplifications of the additional terms in 
equation (27) contain the structure of a variety of numerical dissipation mechanisms. 

Defining the Taylor weak statement (TWS) finite element algorithm for equation (27) involves 
application of the classical procedure. From S" c H", m 3 1, select the subspace ~ ) ~ ( q )  to construct 
the semi-discrete approximation as 

The Galerkin definition for test space is used; hence, for U"E V h  c S" an arbitrary test space, the 
TWS finite element algorithm requires 

r r 

Equation (29) is a matrix ordinary differential equation written on the time derivative of the 
semi-discrete solution expansion coefficient set { Q}, equation (28). For equation (14), the specific 
form is 

L({Q})=Md{Q}/dt+ { E " - E : } , +  { F h - F : } q +  { G " - G : } ( +  { S " }  

- At(  { E h ( 4  B, A) Itq + {Fh(a, B, A) I,, + { Gh(% B, A) I[,,) 
-At2({Eh(~,B,A2)}<,,+ ...),,. (30) 

The first line of terms in equation (30) constitutes the conventional (Bubnov-Galerkin) finite 
element weak statement for the TLNS system, equation (14), including all viscous and source 
terms. The second and third groups of terms constitute the options for embedding of required 
stability mechanisms according to the definitions for a, 8, y ,  ,u and A (with scalar components A j  in 
the q co-ordinate system). 

The TWS fully discrete solution algorithm is completed by defining a linear algebra statement 
using equation (30). For notational simplicity, the matrix functional form of equation (30) is 

M(a,~)d{Q}/dt  + { R ( { Q } , B , , u c l , { s } , A , A t ) }  = (0) (31) 
and the specific construction for M ( . )  and {R( . )}  depends on the choice for the trial space ({N,}) 
and the TWS parameters. Once selected, equation (31) is employed to evaluate the time derivative 
of the discrete Taylor series 

{Q>,+I = {Q},+Atd{Q}/dtln+,+..., (32) 
where* < 0 < 1 yields the (required) implicit algorithm. Substituting equation (3 1) and rearranging 
terms produces the TWS algorithm algebra statement 

{ F }  = M{AQ} + At(e{ R}n+ 1 + (1 - o){R}n)  = (0) 3 (33) 

where { AQ} = { Q},, - { Q}, and subscript (n + 1, n) denotes evaluation at the corresponding 
time level. Linearizing at t ,  produces the TWS linear algebra statement in delta form: 

[ M + e A t q g j  {AQ}= -AL{R}~.  (34) 

The form of equation (34) is ideally suited to determination of time-accurate unsteady and/or 
steady state solutions, the principal goal. The steady state solution has converged when 
{ R ( ) }  + (0) for arbitrary At, hence depends only on the TWS parameters B, p and A. The 
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rate of approach to steady state depends on CI, p, y, p, At and 0, and in the limit At + co equation (34) 
is a Newton algorithm. 

Equation (34) ultimately resides in a code, and the matrix iterative solution procedure selected is 
crucial to efficiency. Of the numerous candidate methods, a tensor matrix product factorization of 
the Jacobian, coupled with a downstream ( 5 )  factor to embed direct space marching, appears most 
a p p r ~ p r i a t e . ~ O - ~ ~  The Jacobian of the numerical linear algebra procedure replaces equation (34) 
by the factored form 

J -  M + O A t -  a{R1] 1: J,@J,@J, .  [ a{QI  (35) 

The factors J ,  and J, ,  spanning the plane transverse to the principal flow direction, are classical 
constructions; i.e. 

each of which is block (2k + 1) diagonal, where k is the completeness degree of the finite element 
basis { Nk}. The principal flow direction factor J ,  is the 'upwind' construction J;1 dependent 
upon the pressure interaction (TLNS) algorithm selected, of the form 

THEORETICAL ANALYSIS 

Convergence, asymptotic error estimates 

The statistically averaged Navier-Stokes equation system, equations (9)-( 12), is incompletely 
elliptic, partially parabolic or hyperbolic dependent upon the definition of the stress tensor and 
constitutive closure relations, equations (1  1)-( 12). A rigorous asymptotic error estimate for the 
TWS algorithm is not published. However, Galerkin finite element error estimates are available for 
simplified model equations of the appropriate form.33 For a (steady state) regular elliptic 
boundary value problem, and denoting the discrete approximation error as eh _= q - q", the 
asymptotic error estimate is (Reference 33, equation (8.80)) 

(38) 11 eh 1 1  H1(Q) G C(hE 11 fll H'(Q) + '2 11 9 11 HP(sQ) ) '  

In equation (38), l l . l l H ( . )  is the Sobolev norm defined on the solution domain (R) and its 
boundary (an), f and g are the corresponding Dirichlet data, r 2 0 is a measure of solution 
differentiability and p 2 $. For sufficiently small h, C is a constant independent of h, h,  is the 
extremum mesh measure, y1 = min(k, r + 1)  while y2 = min (k, min(p + i)), where k is the 
smallest complete degree of the basis, equation (28). 

For a linear parabolic initial-value problem, the error estimate at time t = nAt is of the form 
(Reference 33, equation (9.66)). 

where At is the time step, Qo is the interpolation of q(x, t = 0) onto the nodes of the mesh and C, and 
C2 are constants independent of h for sufficiently small h. The form of equation (39) is augmented, 
for a smooth solution to a linear hyperbolic equation (Reference 33, equation (9.103)), as 
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r n A t  

Note in particular that, for sufficiently small h and At, convergence is dominated by the third term 
in equation (40), which involves the evolution of the true solution over the time interval. For non- 
smooth solutions to a hyperbolic equation, the exact solution will at most exist in 1 1 .  I I H O ( Q )  (or 1 1 . 1 1  L1). 

While no error estimates are published, even for a model problem, viewing equations (38)-(40) one 
might anticipate the form to be 

I leh( . ,nAt) l lHo(Q)< c h & ~ ~ 4 ~ ~ H o ( Q ) + ~ ~ ~  . (41) 
A corresponding expression would exist in 1 1 .  llLl and in either case (hopefully) p > 0. 

Stability, dispersion and dissipation 

The TWS finite element algorithm, equations (27)-(29), is specifically formulated to engender 
stability mechanisms dependent upon the choices for a, b, y ,  p, 8 and Aj ,  a requirement amply 
verified for any (all) Navier-Stokes approximate solution procedures. Baker and Kim29 develop 
the TWS theoretical analysis for a scalar linear hyperbolic/parabolic equation. For the restriction 
to a uniform mesh and the k = 1 basis, the TWS algorithm numerical linear algebra statement, 
equation (34), can be equivalently stated in terms of the central finite difference operators A. and d2 
and the first-order upwind difference operator d2A+ - as 

In equation (42), AQY' = Q;" - QY and 8 and the TWS parameters (recall equation (27)) are now 
combined within the definitions 

CIA ~ ( 8  - E / 2  - yAta,/3), 

clg = c2 [7/6 + 8 ( p / 2  + ,ii At a,/3)] 

CIC = BC3ii/6, 

where c = aAt/Ax is the (element) Courant number and a = a f / d q  is the (scalar Euler) flux vector 
Jaco bian. 

The typical term in the Fourier expansion of the exact inviscid solution is 

q(x, t)  = I/ exp [io(x - at)], (44) 

where o = 271/E. is the wave number of the mode of wavelength E, and i = 4 - 1.  For the semi- 
discrete approximate solution of similar form, one has on a uniform mesh of measure Ax, 

qh(jAx, t )  = Vexp [iw(jAx - @)I,  (45) 

+ i8  contains the dispersion and dissipation (error) components. The amplification where 7 = 
factor g for the fully discrete solution is determined from 

q A ( j A X , t + A t ) = g q h ( j A x , t ) .  (46) 
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Substituting, from equations (42) and (46), one obtains the solution 
c(Ao - aD6’ + aE6’Ar)Qj 

g =  1 - 
[I + (&- ~(,)6’ + ac6’AT]Qj ’ 

(47) 

Using well known identities for the operators in equation (47),” the following estimates for the 
fully discrete solution dissipation error w(At)$ and phase dispersion error oAt(a - B) are readily 
established as 

+ a,c2/2 - (8’ - P)c + (PI - Pa,) 
c3 

(o At)$= c[ m’ (i - u ,  ) + m4( - 

c4 alc3 (pz-p)cz 
2 

) + m  5(-o+T-  

The coefficients a,, P1,P2,. . . are functions of a*, aR, . . . , c, 8 (equation (43)) and the sign of the 
Jacobian (sgn a), and both error functions are series expansions in the element measure m = WAX. 
Upon definition of the TWS theory parameters, equations (48), (49) quantify the stability 
mechanisms of the corresponding algorithm. 

DISCUSSION AND RESULTS 

T WS algorithm stability characterization 

inviscid form of equation (9) (equation (1)) can be organized into three general categories: 
The classification of CFD algorithms on the basis of stability mechanisms for application to the 

( 1 )  
(2) 
(3) 

those with dissipation mechanisms independent of Courant number (donor cell type); 
those with dissipation mechanisms dependent upon Courant number (Lax-Wendroff type); 
those of either type with independently defined parameters. 

A specific (published) algorithm in any of the three categories can be either implicit or explicit. 
Table I (from Reference 29) summarizes the categorical distinctions of 16 algorithms according 
to the definitions of equations (42), (43). 

As the base-line case, the conventional (Bubnov-) Galerkin (BG) algorithm is specified by 
uA = c8, cl = 0 = B= 7 = ,ii, yielding for equations (48), (49) 

COAL($) = c[c($ - O)m2 + c3( - 6 + $6 - + 03)m4 + . . . I ,  (504 

(50W WAL(U - J) = c[c~(+-  8 + 8’)m3 + . . . I .  

Therefore for 8 = 0 the algorithm is unstable (x> 0), for 8 = $ dissipation is O(m6) and decreases to 
O(m’) for 8 = 1. Phase dispersion is O(m3) independent of 8. For a linear travelling sine wave test, 
Figure l(a) confirms relative freedom from diffusion (8 = i) with large lagging phase distortion. 
For the non-linear stationary shock, Figure l(b) fully confirms the inherent instability of BG 
independent of 8 for the steady solution. 

The explicit donor cell and Lax-Wendr~f f~~  finite difference (FD) algorithms form the essence of 
many of the more recently derived FE algorithms. Donor cell, with dissipation mechanism 
independent of Courant number, is obtained by the definitions aA = 0 = ac = aE = 8, aB = (to 
cancel the mass matrix) and aD = (sgn a)/2. Thus from equations (48), (49) 
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8- 

8 

-1 -6 

s j o  0 0 0 0 0 0 0 

4 r - b  

0 0 0 0  o o o o p  

o o o o o o o o  
I 1 1 1  1 1 

0.8 1.2 a.4 0.0 0.8 t .a 0.0 0.2 0.4 0.0 0.0 t .a 

c)  Donor Cell, 8 = 0, c = 0.8. d) Donor Cell, 8 = 0. 

I .0 

0.6 

0.8 

4 . 6  

-I .8 
0.0 0.2 a.4 0.0 0.8 1.0 

I 

e) Lax-Wendroff, 8 = 0, c = 0.8. f) Lax-Wendroff, 8 = 0. 

Figure 1 .  CFDalgorithm predictions of example inviscid test problems; (0) numerical grid point solution; (-) exact 
solution, linear travelling sine wave (left column), non-linear stationary shock (right column) (after Baker and Kimz9) 

o At(T) = c[$(c - l )m2 + . . .] , 
- 

w A t (a  - P, = c[+(2c2 - 3c + l )m3 + . . .] , 
confirming second-order dissipation, third-order phase dispersion and stability for Courant 
number less than unity. Rampant diffusion is evident for the travelling sine wave, Figure l(c), while 
the stationary shock is captured with only unit Ax over- and under-shoot of modest magnitude, 
Figure l(d). The Lax-Wendroff F D  algorithm differs from donor cell only by a , ~ c / 2 .  Thus 
equations (48), (49) yield 

C O A ~ @ ) = C [ + C ( C ~ -  i ) m 4 + . . . 1 ,  

o A t ( a  - p) = cLk(1 - c2)m3 + . . . I ,  
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and the distinction from donor cell is fourth-order dissipation (for c < 1). The large numerical 
diffusion is thus absent from the travelling sine wave solution, Figure l(e), while a 2Ax oscillation 
is induced in the stationary shock, Figure l(f). 

Recently, several Taylor-Galerkin FE algorithms have been p r o p o ~ e d . ~ ~ - ~ ~  These are 
characterized within the Taylor weak statement as explicit procedures that retain the exact form of 
the Taylor series, equation (25), with no parameters introduced. The Swansea Taylor-Galerkin 
(STG) algorithm constitutes Lax-Wendroff with a mass matrix; thus the TWS parameters are 
uA = 0 = ug = uc = uE = 0 and uD = c/2. The corresponding solutions for equations (48), (49) are 

= [ ; (7c4 c2 1 ) ] 
o A t ( ~ - P ) = c  - - m 3 +  +- m5+ . . .  , 

15 24 180 

leading to the rather severe stability constraint c d 1/J3 such that $d 0. Figure 2(a) 
confirms relatively large diffusion (for c = 0.4) and leading phase error for the travelling sine 
wave, and the stationary square wave oscillation, Figure 2(b), is somewhat larger than 
Lax-Wendroff, Figure 1(j). 

b P  
' I ,  I , I , , , 

8.0 0.2 0.4 0.6 6.8 

a )  Swansea Taylor -Galerk in ,  8 = 0, c = 0.4 

c) E u l e r  T a y l o r - G a l e r k i n ,  8 = 0, c = 0.8. 

8.0 0.2 0.4 0.6 0.8 I .0 

b) S w a n s e a  Taylor -Galerk in ,  Q= 0. 

8.8 8.2 8.4 0.6 8.8 1.8 

d) E u l e r  Taylor -Galerk in ,  0 = 0. 
Figure 2. CFD algorithm predictions of example inviscid test problems; (0) numerical grid point solution; (-) exact 
solution, linear travelling sine wave (left column), non-linear stationary shock (right column) (after Baker and Kim2') 
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The original Euler Taylor-Galerkin (ETG) algorithm of D ~ n e a ~ ~  constitutes the definitions 
aA = 0 = a, = aE = 8, aB = c2/6 and aD = c/2. Thus for equations (48), (49) 

(544 

(54b) 

and like Lax-Wendroff the algorithm possesses fourth-order dissipation and is stable for c < 1. In 
distinction, it possesses fifth-order phase dispersion, hence quite accurate propagation of the 
travelling sine wave at c = 0.8, Figure 2(c). Since it is Lax-Wendroff type, as with the STG 
algorithm, the stationary shock shows the substantial oscillation, Figure 2(d). 

The Euler characteristic Galerkin (ECG) FE algorithm of Morton3’ constitutes an exchange 
in the definition of the parameters aB and aE, i.e. ag = 0 and aE = c2/6, in comparison with Donea’s 
algorithm. The subtle distinction between these is apparent in the solution of equations (48), 
(49), which for ECG is 

(554 

o A t ( a - J ) = c [ ( & - g  +--- ri $) r n s +  ... ] . 
The ECG algorithm is stable for all Courant numbers, and for c = 1 is sixth-order accurate as the 
phase dispersion coefficient also vanishes. For c = 0.8, the travelling sine wave solution is 
indistinguishable from ETG. No results were reported for the stationary square wave. 

The class of Petrov-Galerkin algorithms is characterized by introduction of an arbitrary 
parameter in the Taylor series, such that it is no longer exact. The algorithms of Wahlbin41, 
Dendy4’ and Raym~nd-Garde r~~  belong to this class. Hughes and Brooks44 developed the multi- 
dimensional streamline-upwind Petrov-Galerkin (SUPG) formulation for steady state conserv- 
ation laws with physical diffusion. Morton and Parrott3’ detail the Euler Petrov-Galerkin (EPG) 
formulation for the unsteady problem statement. Within the TWS, the EPG algorithm is recovered 
by the definitions aA = 0 = ac = aE = 8, aB = &( 1 - v) and aD = v(sgn a)/2. The theoretical charac- 
terization for equations (48), (49) thus yields 

,At($) = c($(c - v)m’ + [v(c2/4 + c/6 + 1/24) - v2/12 - c/6 - c3/8]m4 + . . . } ,  (56a) 

o A t ( a  - J) = c(  [& + c2/3 - v(3c + 1)/6]rn3 + . . .} . (56b) 
From the original test space definition, v < 1 is required. For non-negative dissipation, the 
resultant (consequential) constraint is c < v. For v = c, the fourth-order diffusion term yields the 
stability requirement c < 4, so there exists a rather severe time step limitation. Figure 3(a) confirms 
quite poor propagation of the travelling sine wave at c = 0.2 in comparison to the STG algorithm 
(with similar stability limitations). The steady square wave, Figure 3(b), computed with v = 0.95 
appears comparable with the donor cell results as expected (compare the aD definitions). 

The Petrov-Galerkin algorithm of R a ~ m o n d - G a r d e r ~ ~ ,  as adapted by Baker and S01iman~~ 
for a FE Euler algorithm, is the only implicit form (originally developed for 8=*) and 
corresponds to retention of the second term in the original Taylor series, equation (25), with 
equal weighting ( E = E ) .  In the TWS statement, this amounts to the definitions 
aA = c8 - (sgn a)v, aB = c8(sgn a)v, ac = 0 = aE, aD = (sgn a)v and 8 arbitrary. The corresponding 
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I .0 

0.5 

0.0 

4 . S  

-I .0 
0.0 0.2 0.4 0.0 0.6 I .0 

a) Euler-Petrov-Galerkin, 
v =  0.2, c = 0.2. 

I 

0 

-I 
0.6 0.2 0.4 0.8 0.0 I .0 

c) Raymond-Garder, 
e =  9, V =  l/m, c = 0.8 

-2 I [ l , l , l  I 

0.0 0.2 0.4 a.0 0.6 I .6 

b) Euler-Petrov-Galerkin, 
V= 0.95, c = 0.2. 

1 

t 
-2 - I t  0.0 0.2 0.4 *.a 0.6 I .a 

d) Raymond-Garder, 
k e < i ,  V =  2 / J E  - -  

Figure 3. CFD algorithm predictions of example inviscid test problems; (0) numerical grid point solution; (-) exact 
solution, linear travelling sine wave (left column), non-linear stationary shock (right column)(after Baker and Kimz9) 

solutions for equations (48), (49) are 

COA~@) = c[c(+- o ) d  + (c3(03  - o2 + 012 - $1 - v/12)m4 + . . .I,  (574 

(57b) oAt (a  - F )  = c[(c’ - 0 + 4)m3 + . . .] . 
Comparing equations (57) and (50), the RG algorithm is identical to BG with the sole addition of a 
fourth-order dissipation term v/12. For 8 2 3 and all v, the RG algorithm is stable for all c with a 
third-order phase dispersion error. In the original RG analysis, v = (15)-’/ ’  was determined 
‘optimal’ according to a semi-discrete Fourier stability analysis. Equation (57a) confirms this 
conclusion erroneous, as no optimal value exists. Figure 3(c) confirms the RG algorithm (with 
v = (15)- l jZ)  is a modest improvement over BG in propagating the sine wave at c = 0.8, while 
the donor cell type damping is evident in the steady state square wave for v = 2 ( 1 5 ) - ’ / ’ ,  
Figure 3(d) .  

Accuracy and convergence, supersonic flows 

The Euler equations, the inviscid form of the TLNS system, provide a venue to estimate the 
validity and the exponent p in the asymptotic error estimate, equation (41), for non-smooth 
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(shocked) solutions. Baker46 reports results for a one-dimensional (unsteady) Riemann shock tube 
definition. The unit interval 0 < x < 1 is bisected; the left side initial conditions are p = 0.445, 
pu = 0.3 11 and pe = 8.928, while the corresponding right side conditions are p = 0.5, pu = 0 
and pe = 1.4275. This results in a shock wave propagating to the right followed by a contact 
discontinuity. The reported TWS algorithm statement is a variant of the Raymond-Garder 
definition, constituting retention of the second derivative terms in the Taylor series, equation (27). 
Specifically, 7 = 0 = p in equation (27) and recalling equation (24), the reported algorithm 
specification constitutes 

where vo = (1 5) -  is the Raymond-Garder determination and the dependent variable ordering is 
(p,  pu, pe). The convergence study was conducted for x = (0,l) uniformly discretized into 
16 < M < 256 finite elements for the linear basis ( k  = 1, equation (28)) TWS algorithm implement- 
ation. The norms computed were H o  and L’, and Figure 4 graphs the resulting estimates of the 
semi-discrete approximation error for p”, pu”, and p ” .  The L’ data are interpolated almost exactly 
by the line of unit slope, while the coarse grid inaccuracy is more evident in HO. 

100 , 

lo3 I02 I o1 
DISCRETIZATION M =  I / h  

Figure 4. TWS algorithm estimation of asymptotic convergence rates; Riemann shock tube problem of Lax, 
k = 1,16 < M < 256 (from Baker45) 



A FINITE ELEMENT CFD ALGORITHM 1253 

The TLNS equation system also contains the boundary layer equations as a subset. 
Computational tests have verified the theoretical asymptotic convergence rate, equation (39), for a 
non-interactive laminar 2D boundary layer solution at M ,  = 2.5. The BG algorithm is utilized and 
0 = implicit solutions generated using the linear and quadratic trial (and test) spaces. Figure 5 

_/ - - - - - - - - - - - -  

8 
.+ 

In r. 

d- 

A 

v o  In 

Hd- 
E 

I I 
0.75 0.88 1 

ETA ( * ) 

(b) 

00 

Figure 5. BG finite element algorithm prediction of supersonic viscous boundary layer velocity and momenta, M ,  = 2.5. 
(a) Linear basis (k = I), M = 128. (b) Quadratic basis (k = 2), M = 64 
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?. 00 

Figure 6. Convergence in energy semi-norm, BG finite element algorithm, laminar supersonic boundary layer, M = 2-5, 
linear and quadratic basis 

graphs the computed solutions for momenta and velocity for the k = 1, M = 128 discretization and 
a k = 2, M = 64 discretization solution. The results are visually indistinguishable and clearly 
illustrate essential linearity for axial velocity (uh) over the range of the normal coordinate (q). The 
computed asymptotic convergence with discretization refinement for both algorithms is graphed 
in Figure 6. Interpolation of the numerical data agrees closely with the theoretical prediction, 
equation (39). The significantly improved k = 2 accuracy level strongly suggests that no a priori 
decision should be made regarding use of only the most elementary basis for a FE aerodynamics 
algorithm. 

Tensor product linear algebra solution 

A key algorithm aspect is the matrix iteration algorithm for the numerical linear algebra 
statement, equations (33), (34). The test problem is unsteady convection-diffusion of a scalar field 4 
in the two-dimensional transverse plane spanned by the q, i co-ordinate system. The governing 
equation is 

f#lt + V.(U(b) - V - L V 4  = 0 (59) 
and the BG finite element algorithm linear algebra statement is 

[ M + B A t ( U , C ,  + U,C,+KD, + K D , ) ] { A Q } =  - A t { R } " ,  (604 

{ R ) " = [ U , C ,  + U,C,+KD, + K D , ] { Q ) " .  (60b) 

The arrays U ,  and U 2  are the (contravariant) convection velocity components parallel to (q, C), K is 
the (constant) thermal conductivity and C,, C,, D, and D, are the corresponding convection and 
diffusion matrices, as constructed from discrete evaluation of the flux vectors ( E  - E,) and (F - F,). 
equation (30). 

The tensor matrix product decomposition of the Jacobian of equation (60a), recall 
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equations (35), (36) is 

J = J,@J, = J, @J,, 
where 

Jl = S,(Jl), = S , [ M ,  + BAt(U,C + KD),], 

J 2  = S,(JZ), = S , [ M ,  + BAt(U2C + KD),] . 

The solution defined by equation (60) is then replaced by the sequence of two solutions, 

Jz { P }  = - At { R } ” ,  Ji  { A Q }  = { P }  (63) 
with { P }  the column matrix of the intermediate solution data. In the ‘standard’ matrix notation of 
Baker,” the coded form of equation (60a) is 

{ R }  = S e { R } e ,  

{ R } ,  = DET, [B200]( { Q}s+ 1 - { Q},) ,  + At - { UBARK}T[B30KO] 

(64) 

( 
1 K 

DET, + --e(ETAKJ)e(ETALJ)e CB2KLI (8 { Q}:+ 1 + (1 - 8) { Q } J ,  9 

where repeated indices ( K ,  J ,  L) are summed over n, the dimension of R“. Further, (EKAKJ), and 
(ETALJ), contain the element average values of the (four) components of the co-ordinate 
transformation ay,/ax,, recall equation (13), { UBARK}, contains the nodal values of the 
contravariant convection velocity (U ,  V,  equation (16)), and DET, is the element measure. Further, 
[B200] is the mass matrix, [B30KO], 1 d K d 2, is the convection (hyper-) matrix and [B2KJ], 
1 < ( K ,  J) < 2, is the diffusion matrix. 

The Newton algorithm Jacobian for equation (64) is directly formed as, 

J, = DET, [BZOO] + 8At - { UBARK};f[B30KO] ( 
+- (ETA K J), (ETALJ), [B2KL] 

DET, 

The tensor matrix product approximation to equation (65) is 

BAtK, 

8AtK,  
DET2, 

J,, = DET1, [A2001 - 8At { UBAR1}T[A3010] + ~ “421 11 9 (664 

[A21 11. (66b) 

DET1, 

J,, = DET2,[A200] - 8At{ UBAR2}T[A3010] + __ 

The tensor product of equations (66a, b) reproduces identically the first two terms in equation (65), 
the third term without the cross-derivatives and a truncation error term of mixed convection- 
diffusion products multiplied by At’. Therefore, while equation (66) represent a decent approxim- 
ation, the numerical linear algebra implementation will yield a linear convergence rate. Table I1 
summarizes the measured convergence history for the sample problem, in terms of error in { AQ}, 
which confirms convergence with four iterations to drive the error in { A Q }  to 
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Table 11. Convergence of tensor product Jacobian numerical 
linear algebra solution to equation (60) 

(AQc - AQAIAQ: 

Iteration Nodes 1,4,7 Nodes 2,5,8 Nodes 3,6,9 

1 0.25875 0005 12 0 
2 - 0.05548 0.00038 0 
3 0.0 1640 0~00000 0 
4 0~00000 000000 0 

* AQ, = computed component of {AQ}; AQ, = exact component 
of { AQ}, equation (60) 

\ 

Figure 7. Schematic perspective of a jet in crossflow 

A turbulent flow prediction 

The TLNS equation system has found wide use in characterization of subsonic (including 
incompressible) flows in aerodynamics and/or hydrodynamics. In this instance, the axial pressure 
gradient is completely retarded (recall equation (1 8)) and problem definitions include juncture 
regions, internal duct flows and a variety of freejet  configuration^.^^ One recent application is the 
basic VSTOL jet definition, i.e. a relatively high-speed jet introduced prependicular into an 
imposed crossflow with boundary layer; see Figure 7. Results are reported4’ for 4 d R d 8 circular 
jets. The steady 3D TLNS equation system is solved, equations (13)-(17), and the reported 
results employed the k--E turbulent closure model system as defined in equations (10)-(12). 
The TLNS system is space-marched parallel to the jet axis, starting from an initial condition 
specification near the plate surface. 

The essential physical characterizations of the VSTOL problem include: 

(1) 

(2) 

generation of a bluff jet cross-section (assuming an initially circular jet) with ‘kidney- 
shaped’ jet velocity isovels; 
self-generation of a transverse vortex pair within the jet cross-section that induces wake 
entrainment and migrates downstream and off-axis with increasing distance from the 
injection plane; 
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(3) generation of an intense ring of high levels of turbulent kinetic energy about the jet and 
elevated levels in the wake. 

All essential characterization aspects are present in the TLNS solutions reported in Reference 47. 
For example, Figure 8(a) shows the composite three-dimensional velocity field on the transverse 
plane at 23 jet diameters above the injection plane. The vectors are parallel to the local transverse 

U. 
--4 

(b) 

Figure 8. PNS algorithm prediction of three-dimensional turbulent jet in crossflow, velocity ratio = 8, Z/D = 2.4 
(from Baker and Or~echowski~'). (a) Three dimensional mean velocity field; (b) Turbulent kinetic energy distribution 
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velocity, with tail located at each node of the transverse plane discretization. The contours are the 
intersection of the jet velocity isovel surfaces with the plane, with level normalized by the initial jet 
velocity. The broken circle denotes the relative location of the injection orifice. The self-induced 
vortex is centred in the lobe of the kidney-shaped isovel, and the mechanisms of lateral deflection, 
forward stagnation and wake entrainment are clearly illustrated. Figure 8(b) is a surface plot of the 
computed distribution of turbulent kinetic energy at the same location, which illustrates creation 
of a high-intensity ring and elevated wake levels from the (assumed) uniform background. Detailed 
comparisons with experimental data are contained in the cited reference. 

CONCLUSIONS 

A Taylor weak statement (TWS) theory has been constructed for viscous compressible and 
turbulent aerodynamic flow applications, for coincident construction of stability mechanisms 
within the classic Galerkin finite element weak statement of semi-discrete approximation error 
orthogonalization. Recovery of over a dozen independently derived CFD algorithms occurs within 
the TWS theory, with the important addition of a general implicit construction for rapid 
convergence to steady state. Confirmation of the theoretical asymptotic error estimates was 
achieved for a supersonic inviscid shocked flow and a viscous boundary layer flow. The latter also 
indicated a significant improvement in accuracy level attainable with use of a quadratic finite 
element trial space. Verification of a factored tensor matrix product numerical linear algebra 
approximation to a Newton algorithm was achieved as well as implementation of a k--E closure 
model in the TLNS equation system algorithm. 
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